Derivative Tips:

1. If two expressions containing variables are multiplied or divided, use a product or quotient rule to find the derivative.
Note that things such as $\pi, e, \ln 2$ and $\cos \left(\frac{5 \pi}{6}\right)$ are not variables.
If the numerator of a fraction is a constant it is easier to rewrite the expression using a negative exponent and then use a chain rule to find the derivative.
2. When doing a chain rule only change one piece each step. For example, the first step of

$$
\frac{d}{d x}\left[2 \sin ^{5}(3 x-2)\right] \text { is } \quad\left[10 \sin ^{4}(3 x-2)\right], \operatorname{not}\left[10 \cos ^{4}(3 x-2)\right]
$$

Each step of the chain is multiplied by the one before. The next step would be: [10 $\sin ^{4}$ ($3 x-$ 2)] $[\cos (3 x-2)]$ and finally

$$
\left[10 \sin ^{4}(3 x-2)\right][\cos (3 x-2)][3]
$$

3. If a base and an exponent both have variables, you must use logarithmic differentiation. This technique also can be used to avoid complicated products and quotients.

To find $\frac{d}{d x}\left[y=(5 x)^{\tan (x)}\right]$, take the \ln of both sides and bring the exponent down as a coefficient:

$$
\begin{gathered}
\ln (y)=\ln (5 x)^{\tan (x)} \\
\ln (y)=\tan (x) \cdot \ln (5 x)
\end{gathered}
$$

Next, take $\frac{d}{d x}$ of both sides: $\quad \frac{d}{d x} \ln (y)=\frac{d}{d x}[\tan (x) \cdot \ln (5 x)]$
Do the product rule on the right: $\frac{1}{y} \frac{d y}{d x}=\tan (x) \frac{1}{5 x} \cdot 5+\ln (5 x) \sec ^{2}(x)$
Multiply both sides by y , which $=(5 x)^{\tan (x)}$:

$$
\frac{d y}{d x}=\left[\tan (x) \frac{1}{x}+\ln (5 x) \sec ^{2}(x)\right]\left[(5 x)^{\tan (x)}\right]
$$

