Chapter 5 Review - graphs and their derivatives

1. f is continuous on $[0,3]$ and satisfies the following

x	0	1	2	3
f	0	2	0	-2
f^{\prime}	3	0	does not exist	-3
$f^{\prime \prime}$	0	-1	does not exist	0

x	$0<x<1$	$1<x<2$	$2<x<3$
f	+	+	-
f^{\prime}	+	-	-
$f^{\prime \prime}$	-	-	-

(a) Find the absolute extrema of f and where they occur.
(b) Find any points of inflection.
(c) Sketch a possible graph of f.
2. Sketch a smooth curve of $y=f(x)$ through the origin with the properties that $f^{\prime \prime}(x)<0$ for $x<0$ and $f^{\prime \prime}(x)>0$ for $x>0$.

Chapter 5 Review - graphs and their derivatives
3. The accompanying figure shows the graph of the derivative of a function f. The domain of f is the closed interval $[-3,3]$.
(a) For what values of x in the open interval $(-3,3)$ does f have a relative maximum? Justify your answer.
(b) For what values of x in the open interval $(-3,3)$ does f have a relative minimum? Justify your answer.
(c) For what values of x is the graph of f concave up? Justify your answer.
(d) Suppose $f(-3)=0$. Sketch a possible graph of f on the domain $[-3,3]$.

4. The volume V of a cone is increasing at the rate of 4π cubic inches per second. At the instant when the radius of the cone is 2 inches, its volume is 8π cubic inches and the radius is increasing at $1 / 3$ inch per second.
(a) At the instant when the radius of the cone is 2 inches, what is the rate of change of the area of its base?
(b) At the instant when the radius of the cone is 2 inches, what is the rate of change of its height h ?
(c) At the instant when the radius of the cone is 2 inches, what is the instantaneous rate of change of the area of its base with respect to its height h ?
5. A piece of wire 60 inches long is cut into six sections, two of length a and four of length b. Each of the two sections of length a is bent into the form of a circle, and the circles are then joined by the four sections of length b to make a frame for a model of a right circular cylinder.
(a) Find the values of a and b that will make the cylinder of maximum volume.
(b) Use differential calculus to justify your answer in part (a).

