Chapter 5 Review – graphs and their derivatives

X	0	1	2	3
f	0	2	0	-2
f'	3	0	does not exist	-3
<i>f</i> "	0	-1	does not exist	0

1. *f* is continuous on [0, 3] and satisfies the following

X	0 < x < 1	1 < <i>x</i> < 2	2 < <i>x</i> < 3
f	+	+	-
f'	+	-	-
<i>f</i> "	-	-	-

(a) Find the absolute extrema of *f* and where they occur.

(b) Find any points of inflection.

(c) Sketch a possible graph of *f*.

2. Sketch a smooth curve of y = f(x) through the origin with the properties that

f''(x) < 0 for x < 0 and f''(x) > 0 for x > 0.

Chapter 5 Review – graphs and their derivatives

3. The accompanying figure shows the graph of the derivative of a function *f*. The domain of *f* is the closed interval [-3, 3].

(a) For what values of *x* in the open interval (-3, 3) does *f* have a relative maximum? Justify your answer.

(b) For what values of *x* in the open interval (-3, 3) does *f* have a relative minimum? Justify your answer.

(c) For what values of *x* is the graph of *f* concave up? Justify your answer.

(d) Suppose f(-3) = 0. Sketch a possible graph of f on the domain [-3, 3].

Chapter 5 Review – graphs and their derivatives

4. The volume V of a cone is increasing at the rate of 4π cubic inches per second. At the instant when the radius of the cone is 2 inches, its volume is 8π cubic inches and the radius is increasing at 1/3 inch per second.

(a) At the instant when the radius of the cone is 2 inches, what is the rate of change of the area of its base?

(b) At the instant when the radius of the cone is 2 inches, what is the rate of change of its height *h*?

(c) At the instant when the radius of the cone is 2 inches, what is the instantaneous rate of change of the area of its base with respect to its height *h*?

5. A piece of wire 60 inches long is cut into six sections, two of length *a* and four of length *b*. Each of the two sections of length *a* is bent into the form of a circle, and the circles are then joined by the four sections of length *b* to make a frame for a model of a right circular cylinder.

(a) Find the values of *a* and *b* that will make the cylinder of maximum volume.

(b) Use differential calculus to justify your answer in part (a).

